

## Q56QL002D00F000

MSA and TAA 200GBase-FR4 QSFP56 Transceiver (SMF, 1310nm, 2km, LC, DOM, CMIS 4.0)

## **Product Description**

This MSA Compliant QSFP56 transceiver provides 200GBase-FR4 throughput up to 2km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Skylane's transceivers are RoHS compliant and lead-free.

## Features:

- SFF-8661 Rev. 2.5 Compliant
- IEEE Std 802.3-2018 Section 8 200GAUI-4 Compliant
- IEEE Std 802.3cn-2019 200GBASE-FR4 Compliant
- Cooled EA-DFB-LDs at Each CWDM 1.3μm Wavelength
- 4x PIN-PDs with TIA
- 4x26.5625 GBd PAM4 Electrical Lanes into Optical Channels
- Duplex LC Connector
- Single-Mode Fiber
- CMIS 4.0 Management Interface
- Power Consumption is <6.5W
- Commercial Temperature 0 to 70 Celsius
- RoHS Compliant and Lead-Free



#### **Applications:**

- 200GBase Ethernet
- Access and Enterprise

For your product safety, please read the following information carefully before any manipulation of the transceiver:



#### 5015.475

**ESD** 

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.



#### LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

## **Absolute Maximum Ratings**

| Parameter                  | Symbol | Min. | Тур. | Max. | Unit | Notes |
|----------------------------|--------|------|------|------|------|-------|
| Maximum Supply Voltage     | Vcc    | 0    |      | 3.6  | V    |       |
| Storage Temperature        | Tstg   | -40  |      | 85   | °C   |       |
| Operating Case Temperature | Тс     | 0    | 25   | 70   | °C   |       |

## Notes:

1. Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those provided. Exposure to Absolute Maximum Ratings will cause permanent damage and/or adversely affect device reliability.

## **Electrical Characteristics**

| Parameter                                             | Symbol /<br>Test Point | Min.                | Тур.           | Max.   | Unit | Notes |
|-------------------------------------------------------|------------------------|---------------------|----------------|--------|------|-------|
| Supply Voltage                                        | Vcc                    | 3.135               | 3.3            | 3.465  | V    |       |
| Module Power Supply Noise Tolerance                   | PSNR <sub>mod</sub>    |                     |                | 66     | mV   | 1     |
| Power Consumption                                     | PD                     |                     |                | 6.5    | W    |       |
| Instantaneous Peak Current                            | lcc_ip                 |                     |                | 2600   | mA   | 2     |
| Sustained Peak Current                                | lcc_sp                 |                     |                | 2145.2 | mA   | 2     |
| Supply Current                                        | lcc                    |                     |                | 2073.4 | mA   | 3     |
| Transmitter Per Lane                                  |                        |                     |                |        |      |       |
| Signaling Rate Per Lane (Range)                       | TP4                    | 26                  | 5.5625 ± 100pp | om     | GBd  | 4     |
| AC Common-Mode Output Voltage (RMS)                   | TP4                    |                     |                | 17.5   | mV   |       |
| Differential Pk-Pk Output Voltage                     | TP4                    |                     |                | 900    | mV   |       |
| Near-End Eye Symmetry Mask Width<br>(ESMW)            | TP4                    | 0.265               |                |        | UI   |       |
| Near-End Eye Height Differential                      | TP4                    | 70                  |                |        | mV   |       |
| Far-End Eye Symmetry Mask Width<br>(ESMW)             | TP4                    | 0.2                 |                |        | UI   |       |
| Far-End Eye Height Differential                       | TP4                    | 30                  |                |        | mV   |       |
| Far-End Pre-Cursor ISI Ratio                          | TP4                    | -4.5                |                | 2.5    | %    |       |
| Differential Output Return Loss                       | TP4                    | Equation<br>(83E-2) |                |        | dB   | 5     |
| Common to Differential Mode Conversion<br>Return Loss | TP4                    | Equation<br>(83E-3) |                |        | dB   | 5     |
| Differential Termination Mismatch                     | TP4                    |                     |                | 10     | %    |       |
| Transition Time (20-80%)                              | TP4                    | 9.5                 |                |        | ps   |       |
| DC Common-Mode Voltage                                | TP4                    | -350                |                | 2850   | mV   |       |

| Receiver Per Lane                                |      |                     |                  |         |    |   |  |
|--------------------------------------------------|------|---------------------|------------------|---------|----|---|--|
| Signaling Speed Per Lane (Range)                 |      | 26                  | 26.5625 ± 100ppm |         |    |   |  |
| Differential Pk-Pk Input Voltage Tolerance       | TP1a | 900                 |                  |         | mV |   |  |
| Differential Input Return Loss                   | TP1  | Equation<br>(83E-5) |                  |         | dB | 5 |  |
| Differential to Common-Mode Input<br>Return Loss | TP1  | Equation<br>(83E-6) |                  |         | dB | 5 |  |
| Differential Termination Mismatch                | TP1  |                     |                  | 10      | %  |   |  |
| Eye Symmetry Mask Width (ESMW)                   | TP1a | 0.22                |                  |         | UI |   |  |
| Eye Width                                        | TP1a | 0.22                |                  |         | UI |   |  |
| Applied Pk-Pk Sinusoidal Jitter                  | TP1a | Table 120E-6        |                  | MHz, UI |    |   |  |
| Eye Height                                       | TP1a | 32                  |                  |         | mV |   |  |
| Single-Ended Input Voltage Tolerance<br>Range    | TP1a | -0.4                |                  | 3.3     | V  |   |  |
| DC Common-Mode Voltage                           | TP1  | -350                |                  | 2850    | mV |   |  |

#### Notes:

- 1. 10Hz to 10MHz.
- 2. Instantaneous and sustained peak currents for Icc host.



- 3. Steady state.
- 4. Electrical module output is squelched for loss of optical input signal.
- 5. IEEE Std 802.3-2018 Section 6.

## **Optical Characteristics**

| Parameter                                                                   |             |              | Symbol | Min.    | Тур.                    | Max.   | Unit  | Notes    |
|-----------------------------------------------------------------------------|-------------|--------------|--------|---------|-------------------------|--------|-------|----------|
| Channel Data Rate                                                           |             | fDC          |        | 53.125  |                         | Gbps   |       |          |
| Signaling Rate Per Lane                                                     |             | fSG          |        | 26.5625 |                         | GBd    | 1     |          |
| Signal Speed Variation from Nominal Per<br>Lane                             |             | fSG          | -100   |         | 100                     | ppm    |       |          |
| Optical Receiver Input                                                      |             |              |        |         |                         | +5.7   | dBm   | 2        |
| Lane Wavelengths (Rar                                                       | nge)        | Lane 0       | λC0    | 1264.5  |                         | 1277.5 | nm    |          |
| Lane 1<br>Lane 2                                                            |             | λC1          | 1284.5 |         | 1297.5                  | nm     |       |          |
|                                                                             |             | Lane 2       | λC2    | 1304.5  |                         | 1317.5 | nm    |          |
|                                                                             |             | Lane 3       | λC3    | 1324.5  |                         | 1337.5 | nm    |          |
| Transmitter                                                                 |             |              |        |         |                         |        |       |          |
| Side-Mode Suppression                                                       | n Ratio     |              | SMSR   | 30      |                         |        | dB    |          |
| Total Average Launch F                                                      | Power       |              |        |         |                         | 10.7   | dBm   |          |
| Average Launch Power                                                        | Per Lane    |              |        | -4.2    |                         | 4.7    | dBm   | 3        |
| Outer Optical Modulat<br>(OMAouter) Per Lane                                | ion Amplit  | tude         |        | -1.2    |                         | 4.5    | dBm   | 4        |
| Difference in Launch Power Between Any<br>Two Lanes (OMAouter)              |             |              |        |         | 4                       | dB     |       |          |
| Launch Power in<br>OMAouter Minus<br>TDECQ Per LaneFor ER≥4.5dBFor ER<4.5dB |             |              | -2.6   |         |                         | dBm    |       |          |
|                                                                             |             |              | -2.5   |         |                         | dBm    |       |          |
| Transmitter and Dispersion Eye Closure for<br>PAM4 Per Lane                 |             | TDECQ        |        |         | 3.1                     | dB     |       |          |
| TDECQ – 10log <sub>10</sub> (Ceq) Per Lane                                  |             |              |        |         | 3.1                     | dB     | 5     |          |
| Average Launch Power of Off Transmitter<br>Per Lane                         |             | Poff         |        |         | -30                     | dBm    |       |          |
| Extinction Ratio Per Lane                                                   |             |              | ER     | 3.5     |                         |        | dB    |          |
| RIN <sub>15.6</sub> OMA                                                     |             |              |        |         |                         | -132   | dB/Hz |          |
| <b>Optical Return Loss Tol</b>                                              | lerance     |              |        |         |                         | 17.1   | dB    |          |
| Transmitter Reflectanc                                                      | e           |              |        |         |                         | -26    | dB    | 6        |
| Receiver                                                                    |             |              |        |         |                         |        |       |          |
| Average Receive Powe                                                        | r Per Lane  |              |        | -8.2    |                         | 4.7    | dBm   | 7        |
| Receive Power (OMAo                                                         | uter) Per L | ane          |        |         |                         | 4.5    | dBm   |          |
| Difference in Receive Power Between Any<br>Two Lanes (OMAouter)             |             |              |        |         | 4.1                     | dB     |       |          |
| Receiver Reflectance                                                        |             |              |        |         | -26                     | dB     |       |          |
| Receiver Sensitivity (O                                                     | MAouter)    | Per Lane     |        | Max     | . (-5.5 <i>,</i> SECQ – | 6.9)   | dBm   | 8, 9, 10 |
| Stressed Receiver Sens<br>Per Lane                                          | itivity (ON | 1Aouter)     |        |         |                         | -3.8   | dBm   | 8, 11    |
| Receiver Loss of Signal                                                     | Indicator   | Assert Level | Rx_LOS | -30     |                         | -11.2  | dBm   | 12       |
| Receiver Loss of Signal<br>Level                                            | Indicator   | De-Assert    | Rx_LOS |         |                         | -8.2   | dBm   | 12       |

| Hysteresis                                           | Rx_LOS | 0.5 |     |  | dB  |       |  |  |
|------------------------------------------------------|--------|-----|-----|--|-----|-------|--|--|
| Conditions of Stressed Receiver Sensitivity Test     |        |     |     |  |     |       |  |  |
| Stressed Eye Closure For PAM4 Per Lane<br>Under Test | SECQ   |     | 3.1 |  | dB  | 13    |  |  |
| SECQ – 10log <sub>10</sub> (Ceq) Per Lane Under Test |        |     | 3.1 |  | dB  | 5, 13 |  |  |
| OMAouter of Each Aggressor Lane                      |        |     | 0.3 |  | dBm | 13    |  |  |

## Notes:

- 1. PAM4.
- 2. Average per lane.
- 3. Average launch power, per lane (minimum), is informative and not the principal indicator of signal strength. A transmitter and launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- Even if the TDECQ<1.4dB for an extinction ratio of ≥4.5dB or TDECQ<1.3dB for an extinction ratio of</li>
  <4.5dB, the OMAouter (minimum) must exceed this value.</li>
- 5. Ceq is a coefficient defined in IEEE Std 802.3-2018 Clause 121.8.5.3 which accounts for reference equalizer noise enhancement.
- 6. Transmitter reflectance is defined looking into the transmitter.
- 7. Average receive power, per lane (minimum), is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 8. For when pre-FEC BER is  $2.4 \times 10^{-4}$ .
- 9. Receiver sensitivity (OMAouter), per lane (maximum), is informative and is defined for a transmitter with a value of SECQ up to 3.1dB.
- 10. Illustration of receiver sensitivity for 200GBASE-FR4:



- 11. Measured with conformance test signal at TP3 (see IEEE Std 802.3-2018 Clause 122.8.9) for the BER specified in IEEE Std 802.3-2018 Clause 122.1.1.
- 12. Average power.
- 13. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

## **Pin Descriptions**

| Pin | Logic      | Symbol       | Name/Description                                                                          | Plug<br>Sequence | Notes |
|-----|------------|--------------|-------------------------------------------------------------------------------------------|------------------|-------|
| 1   |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 2   | CML-I      | Tx2-         | Transmitter Inverted Data Input.                                                          | 3                |       |
| 3   | CML-I      | Tx2+         | Transmitter Non-Inverted Data Input.                                                      | 3                |       |
| 4   |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 5   | CML-I      | Tx4-         | Transmitter Inverted Data Input.                                                          | 3                |       |
| 6   | CML-I      | Tx4+         | Transmitter Non-Inverted Data Input.                                                      | 3                |       |
| 7   |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 8   | LVTTL-I    | ModSelL      | Module Select.                                                                            | 3                |       |
| 9   | LVTTL-I    | ResetL       | Module Reset.                                                                             | 3                |       |
| 10  |            | VccRx        | +3.3V Receiver Power Supply.                                                              | 2                | 2     |
| 11  | LVCMOS-I/O | SCL          | 2-Wire Serial Interface Clock.                                                            | 3                |       |
| 12  | LVCMOS-I/O | SDA          | 2-Wire Serial Interface Data.                                                             | 3                |       |
| 13  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 14  | CML-O      | Rx3+         | Receiver Non-Inverted Data Output.                                                        | 3                |       |
| 15  | CML-O      | Rx3-         | Receiver Inverted Data Output.                                                            | 3                |       |
| 16  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 17  | CML-O      | Rx1+         | Receiver Non-Inverted Data Output.                                                        | 3                |       |
| 18  | CML-O      | Rx1-         | Receiver Inverted Data Output.                                                            | 3                |       |
| 19  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 20  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 21  | CML-O      | Rx2-         | Receiver Inverted Data Output.                                                            | 3                |       |
| 22  | CML-O      | Rx2+         | Receiver Non-Inverted Data Output.                                                        | 3                |       |
| 23  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 24  | CML-O      | Rx4-         | Receiver Inverted Data Output.                                                            | 3                |       |
| 25  | CML-O      | Rx4+         | Receiver Non-Inverted Data Output.                                                        | 3                |       |
| 26  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 27  | LVTTL-O    | ModPrsL      | Module Present.                                                                           | 3                |       |
| 28  | LVTTL-O    | IntL/RxLOSL  | Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636).     | 3                |       |
| 29  |            | VccTx        | +3.3V Transmitter Power Supply.                                                           | 2                | 2     |
| 30  |            | Vcc1         | +3.3V Power Supply.                                                                       | 2                | 2     |
| 31  | LVTTL-I    | LPMode/TxDis | Low-Power Mode. Optionally configurable as TxDis via the management interface (SFF-8636). | 3                |       |
| 32  |            | GND          | Module Ground.                                                                            | 1                | 1     |
| 33  | CML-I      | Tx3+         | Transmitter Non-Inverted Data Input.                                                      | 3                |       |
| 34  | CML-I      | Tx3-         | Transmitter Inverted Data Input.                                                          | 3                |       |

| 35 |       | GND  | Module Ground.                       | 1 | 1 |
|----|-------|------|--------------------------------------|---|---|
| 36 | CML-I | Tx1+ | Transmitter Non-Inverted Data Input. | 3 |   |
| 37 | CML-I | Tx1- | Transmitter Inverted Data Input.     | 3 |   |
| 38 |       | GND  | Module Ground.                       | 1 | 1 |

## Notes:

- 1. GND is the symbol for signal and supply (power) common for the module. All are common within the module, and all module voltages are referenced to this potential unless otherwise noted. Connect them directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1, and VccTx are applied concurrently and may be internally connected within the module in any combination. Vcc contacts in SFF-8662 and SFF-8672 each have a steady state current rating of 1A.



## **Electrical Pin-Out Details**

Top Side Viewed From Top Bottom Side Viewed From Bottom

## **Recommended Host Board Power Supply Filtering**



## **Functional Block Diagram**



## **Mechanical Specifications**



#### Notes:

- 1. All dimensions are measured in mm.
- 2. Green pull tab.

## **Case Temperature Measurement Point**



# **Optical Interface**



## Notes:

1. Looking into the connector, the transmitter is on the left.

# About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box (SKYGATE).









