

QBDTUMES0902000

MSA and TAA 400GBase-ZR+ QSFP-DD Transceiver (SMF, Coherent, LC, DOM, Open ZR+)

Product Description

This MSA Compliant QSFP-DD transceiver provides 400GBase-ZR+ throughput up to Open ZR+ over single-mode fiber (SMF) using a wavelength of 1528.77nm to 1567.13nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- Hot pluggable QSFP-DD footprint (Type 2A)
- 8x 26.5625GBd PAM4 Serial Electrical Interface (400GAUI-8, RS (544/514) FEC)
- Supports 400/300/200/100Gbps Payload
- Tunable C-band Transmitter
- Coherent Receivers
- Duplex LC connector
- 4x 25.78125GBd NRZ Serial Electrical Interface (CAUI-4, RS

(528/514) FEC)

- 2x 26.5625GBd PAM4 Serial Electrical Interface (100GAUI-2, RS (544/514) FEC)
- Commercial Temperature -5 to 85 Celsius
- O-FEC (15%) with 11.6dB Net Coding Gain
- RoHS Compliant

Applications:

- 400GBase Ethernet
- Access and Enterprise

For your product safety, please read the following information carefully before any manipulation of the transceiver:

ESD

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	Тор	-5		80	°C	
Relative Humidity (non-condensing)	RH			85	%	
Optical Receiver Overload				1	dBm	1
Line Baud Rate			60.13855		GBd	2, 3, 4
Line Baud Rate			30.06927		GBd	5

Notes:

1. The optical input to the receiver should not exceed this value. Transmitters must never be directly connected to receivers before ensuring that proper optical attenuation is used

- 2. ZR400-OFEC-16QAM
- 3. ZR300-OFEC-8QAM
- 4. ZR200-OFEC-QPSK
- 5. ZR100-OFEC-QPSK

Electrical Characteristics

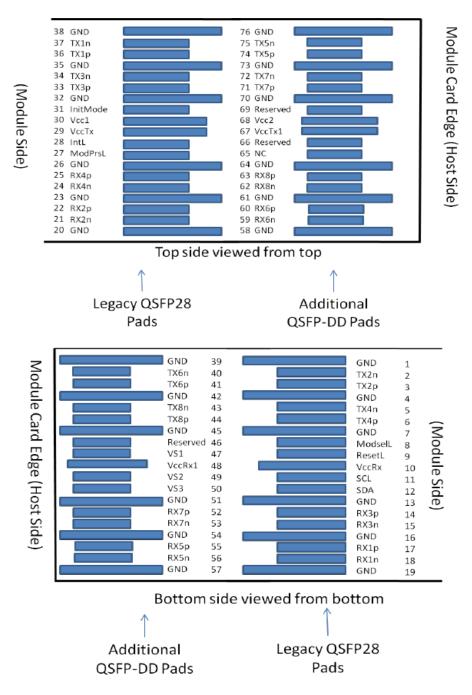
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Supply Current	lcc			6	А	
Power Consumption	PD		18.4	21.3	W	
Power Consumption	PD			1.5	W	1

Notes:

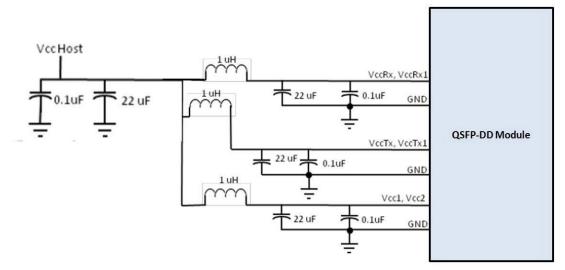
1. Low power mode

Optical Characteristics

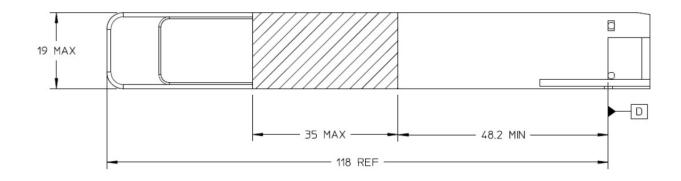
Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Transmitter						
Average Output Power	Ро	-10	-8.5	-6	dBm	1, 2
Laser Linewidth				300	kHz	
Transmitter VOA Dynamic Range		10			dB	3
Output Power Stability		-1		1	dB	
In-Band OSNR		40			dB/0.1nm	
Out-of-Band OSNR		35			dB/0.1nm	
Frequency Range		191.275		196.125	THz	4
Centre Frequency		v⊤ -1.5	VT	ν _T +1.5	GHz	5
Channel Spacing		6.25			GHz	
Centre Wavelength Range	Τλ	1528.58		1567.34	nm	
Centre Wavelength	Τλ	λΤ -15	λτ	λT +15	pm	
Receiver						
Receiver Operating Wavelength	Rλ	1528.58		1567.34	nm	
Receiver Sensitivity	S			-23	dBm	6, 7
	S			-30	dBm	8
	S			-32	dBm	9
Receiver Overload	P _{OL}	1			dBm	10
Receiver Input Power Range		-12		1	dBm	11, 12
		-15		1	dBm	11, 13
		-17		1	dBm	11, 14
		-20		1	dBm	11, 15
Extended Receiver Input Power Range		-15		1	dBm	16
Acquisition Range		-3.6		3.6	GHz	17
Upstream Tx Linewidth				500	kHz	
OSNR Tolerance			21.7	22.7	dB	12
			18.3	19.3	dB	13
			14	15	dB	14
			10.5	11	dB	15
Crosstalk Tolerance				7	dB	18
Chromatic Dispersion Tolerance				26000	ps/nm	12, 19
				50000	ps/nm	13, 14, 19
				80000	ps/nm	15, 19

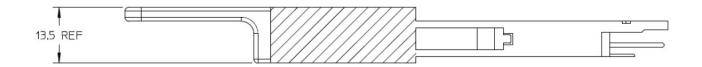

Notes:

- 1. Output power coupled into a 9/125 μm single mode fibre
- 2. The output power is settable in steps of 0.1 dB within the specified wavelength range
- 3. With Tx VOA attenuation set to minimum
- 4. Per ITU-T G.694.1 DWDM grid definition
- 5. Applies also to LO
- 6. Minimum input power needed to achieve post-FEC BER ≤10-15, ZR400-OFEC-16QAM, OSNR>35dB
- 7. Minimum input power needed to achieve post-FEC BER ≤10-15, ZR300-OFEC-8QAM, OSNR>35dB
- 8. Minimum input power needed to achieve post-FEC BER ≤10-15, ZR200-OFEC-QPSK, OSNR>35dB
- 9. Minimum input power needed to achieve post-FEC BER ≤10-15, ZR100-OFEC-QPSK, OSNR>35dB
- 10. The optical input to the receiver should not exceed this value. Transmitters must never be directly connected to receivers before ensuring that proper optical attenuation is used
- 11. An input power in this range guarantees optimum OSNR performance
- 12. ZR400-OFEC-16QAM
- 13. ZR300-OFEC-8QAM
- 14. ZR200-OFEC-QPSK
- 15. ZR100-OFEC-QPSK
- 16. With ≤1dB OSNR tolerance degradation
- 17. Frequency offset between received carrier and LO
- 18. Ratio of accumulated crosstalk channels to signal power
- 19. Less than 0.5dB receiver sensitivity penalty compared to OSNR>35dB


Pin Descriptions

Pin	Logic	Symbol	Name/Descriptions	Plug Sequence
1		GND	Ground	1B
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B
4		GND	Ground	1B
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	3В
7		GND	Ground	1B
8	LVTTL-I	ModSelL	Module Select	3B
9	LVTTL-I	ResetL	Module Reset	3B
10		VccRx	+3.3V Power Supply Receiver	2B
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B
13		GND	Ground	1B
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B
15	CML-O	Rx3n	Receiver Inverted Data Output	3В
16	GND	Ground	18	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B
18	CML-O	Rx1n	Receiver Inverted Data Output	3В
19		GND	Ground	1B
20		GND	Ground	18
21	CML-O	Rx2n	Receiver Inverted Data Output	3В
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3В
23		GND	Ground	1B
24	CML-O	Rx4n	Receiver Inverted Data Output	ЗВ
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3В
26		GND	Ground	18
27	LVTTL-O	ModPrsL	Module Present	ЗВ
28	LVTTL-O	IntL	Interrupt	ЗВ
29		VccTx	+3.3V Power supply transmitter	2B
30		Vcc1	+3.3V Power supply	2B
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B
32		GND	Ground	18
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	ЗВ
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B
35		GND	Ground	18
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3В
37	CML-I	Tx1n	Transmitter Inverted Data Input	3В
38		GND	Ground	18
39		GND	Ground	1A
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A


41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A
42		GND	Ground	1A
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A
45		GND	Ground	1A
46		Reserved	For future use	3A
47		VS1	Module Vendor Specific 1	3A
48		VccRx1	3.3V Power Supply	2A
49		VS2	Module Vendor Specific 2	3A
50		VS3	Module Vendor Specific 3	3A
51		GND	Ground	1A
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A
53	CML-O	Rx7n	Receiver Inverted Data Output	3A
54		GND	Ground	1A
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A
56	CML-O	Rx5n	Receiver Inverted Data Output	3A
57		GND	Ground	1A
58		GND	Ground	1A
59	CML-O	Rx6n	Receiver Inverted Data Output	3A
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A
61		GND	Ground	1A
62	CML-O	Rx8n	Receiver Inverted Data Output	3A
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A
67		GND	Ground	1A
68		NC	No Connect	3A
69		Reserved	For future use	3A
70		VccTx1	3.3V Power Supply	2A
71		Vcc2	3.3V Power Supply	2A
72		Reserved	For Future Use	3A
73		GND	Ground	1A
74	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A
75	CML-I	Tx7n	Transmitter Inverted Data Input	3A
76		GND	Ground	1A



Recommended Power Supply Filter

Mechanical Specifications

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box (SKYGATE).

