

DAAQ2M01HD0FO0F

Mellanox® MCA7J50-H001R Compatible TAA 200GBase-CU QSFP56 to 2xQSFP56 Direct Attach Cable (Active Twinax, 1m, Infiniband HDR)

Product Description

This is a Mellanox® MCA7J50-H001R Compatible 200GBase-CU QSFP56 to 2xQSFP56 Infiniband HDR direct attach cable that operates over active copper with a maximum reach of 1m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- QSFP Module Compliant to SFF-8661
- Transmission Data Rate up to PAM4 53.125Gbps Per Channel
- Compliant to InfiniBand HDR
- Fully Preserves Effects of Transmit Pre-Emphasis or Amplitude Adjustments
- Low Power Consumption:
- Enables 212.5Gbps to 2x106.25Gbps Transmission
- Operating Case Temperature: 0 to 70 Celsius
- Independent Equalization Setting and Standby Control
- RoHS Compliant and Lead-Free

Applications:

• 200GBase

For your product safety, please read the following information carefully before any manipulation of the transceiver:

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

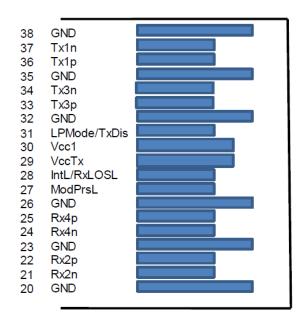
The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

Absolute Maximum Ratings

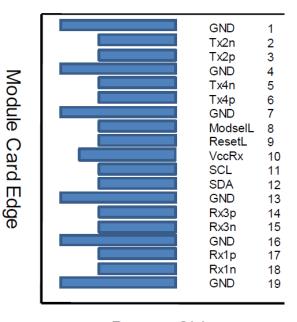
Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	-0.3	3.3	3.6	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	°C
Relative Humidity	RH	5		85	%
Data Rate			212.5		Gbps

Physical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Length	L			1	M
AWG			30		AWG
Jacket Material		PVC, Black			


Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	Vcc	3.1	3.3	3.5	V
Current Draw for Each Active Channel	lact-Ch		45		mA
Current Draw When Both Channels are Placed in Standby Mode	Istdby		1		mA
Input Voltage - High (PROGEN, SCL, SDA)	VIH	3.1	3.3	3.5	V
Input Voltage - High (ADDR0/1/2)	VIH_ADDR	2.3	2.5	2.7	V
Input Voltage - Low	VIL	0		0.4	V
Time from Valid Vcc to Operation of the IC	TStartUp			10	ms
Time from Valid Vcc to VIH of 12C Signals	TI2C	0			ms


High-Speed Channel Characteristics

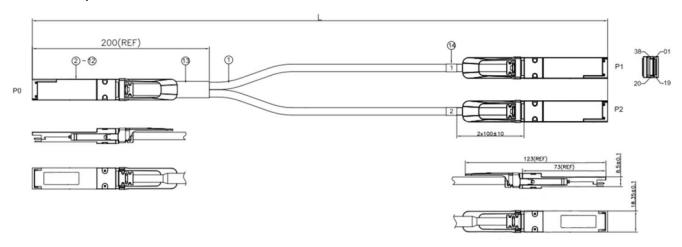
Parameter	Symbol	Min.	Тур.	Max.	Unit
Raw Cable Differential Impedance	Zca	90		110	Ω
PCBA Differential Impedance	Zpcba	85		115	Ω
Maximum Insertion Loss at 13.28GHz	SDD21	6		14	dB
Other SI Performance		Compliant with Infiniband HDR			
Minimum COM	СОМ	3			dB
Bit Error Ratio				1E ⁻⁸	

Electrical Pin-Out Details for QSFP

Top Side Viewed From Top

Bottom Side Viewed From Bottom

Pin Descriptions


Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Module Ground.	1
8	LVTTL-I	ModSelL	Module Select.	
9	LVTTL-I	ResetL	Module Reset.	
10		VccRx	+3.3V Receiver Power Supply.	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
13		GND	Module Ground.	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1
21	CML-O	Rx2-	Receiver Inverted Data Output.	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27	LVTTL-O	ModPrsL	Module Present.	
28	LVTTL-O	IntL	Interrupt.	
29		VccTx	+3.3V Transmitter Power Supply.	2
30		Vcc1	+3.3V Power Supply.	2
31	LVTTL-I	LPMode	Low-Power Mode.	
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	

35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1

Notes:

- GND is the symbol for signal and supply (power) common for the QSFP module. All are common within the QSFP module, and all module voltages are referenced to this potential unless otherwise noted.
 Connect these directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1, and VccTx are the receiver and transmitter power supplies and shall be applied concurrently. VccRx, Vcc1, and VccTx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Mechanical Specifications

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box (SKYGATE).

