

Q2D40080C005000

MSA and TAA 100GBase-DWDM PAM4 QSFP28 Transceiver Single Lambda C-Band 100GHz w/EDFA/DCM (SMF, 1545.32nm, 80km w/EDFA/DCM, LC, DOM)

Product Description

This MSA Compliant QSFP28 transceiver provides 100GBase-DWDM throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1545.32nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- SFF-8636 MSA Compliance
- 100GHz DWDM ITU Grid
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- PAM4 optical signal with integrated FEC
- Single-mode Fiber
- Metal with Lower EMI
- Hot Pluggable
- RoHS Compliant and Lead Free
- Excellent ESD Protection

Applications:

- 100GBase Ethernet
- Access, Metro and Enterprise

For your product safety, please read the following information carefully before any manipulation of the transceiver:

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Wavelength Guide (100GHz ITU-T Channel)

Channel #	Frequency (GHz)	Center Wavelength (nm)	Channel #	Frequency (GHz)	Center Wavelength (nm)
21	192.1	1560.61	41	194.1	1544.53
22	192.2	1559.79	42	194.2	1543.73
23	192.3	1558.98	43	194.3	1542.94
24	192.4	1558.17	44	194.4	1542.14
25	192.5	1557.36	45	194.5	1541.35
26	192.6	1556.55	46	194.6	1540.56
27	192.7	1555.75	47	194.7	1539.77
28	192.8	1554.94	48	194.8	1538.98
29	192.9	1554.13	49	194.9	1538.19
30	193.0	1553.33	50	195.0	1537.40
31	193.1	1552.52	51	195.1	1536.61
32	193.2	1551.72	52	195.2	1535.82
33	193.3	1550.92	53	195.3	1535.04
34	193.4	1550.12	54	195.4	1534.25
35	193.5	1549.32	55	195.5	1533.47
36	193.6	1548.51	56	195.6	1532.68
37	193.7	1547.72	57	195.7	1531.90
38	193.8	1546.92	58	195.8	1531.12
39	193.9	1546.12	59	195.9	1530.33
40	194.0	1545.32	60	196.0	1529.55

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature (case)	Ts	-40		85	°C
Operating Case Temperature	Тор	0	25	70	V
Supply Voltage	V _{CC}	0		3.6	V
Relative Humidity (non-condensing)	RH	5		85	%
Optical Receiver Damage Threshold	Rxdmg	5			dBm
ESD Sensitivity		500			V

Electrical Characteristics

The host 4x25.78 Gbps electrical interface complies with the CAUI-4 standard.

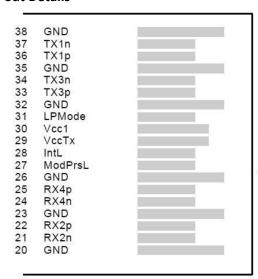
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate per Lane (host side)	BRavg		25.78125		Gbps	
Data Rate Variation		-100		100	ppm	
Power Supply Voltage	V _{CC}	3.135	3.3	3.47	V	
Power Consumption	PD		4.7	5.5	W	
Transmitter						
Input Swing (Differential)	Vin			900	mVpp	AC coupled
Input Impedance (Differential)	Zin	90	100	110	Ohm	
Receiver						
Output Swing (Differential)	Vout			900	mVpp	AC coupled
Output Impedance (Differential)	Zout	90	100	110	Ohm	
Low Speed Signals						
LPMode, Reset, ModSel	VIL	-0.3		0.8	V	
	VIH	2		V _{CC} +0.3	V	
ModPrs, Int	VOL	0		0.4	V	IOL = 2.0mA
	VOH	Vcc-0.5		Vcc+0.3	V	
SCL, SDA	VIL	-0.3		0.3*V _{CC}	V	
	VIH	0.7*Vcc		Vcc+0.5	V	
SCL, SDA	VOL	0		0.4	V	IOL _{max} = 3.0mA
	VOH	Vcc-0.5		V _{CC} +0.3	V	

Optical Characteristics

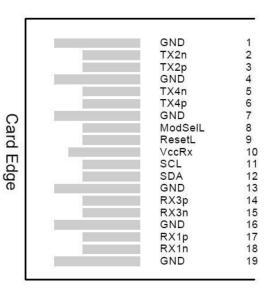
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate	BR	103.125			Gbps	1
Data Rate Variation		-100		100	ppm	
Transmitter						
Central Wavelength	λС	1527	λ	1567	nm	
Central Wavelength Stability		λς-0.1		λC+0.1	nm	
Average Output Optical Power	P0	-2	-0.5	2	dBm	5
Optical Extinction Ratio (outer)	ER	6			dB	
Optical Output Power, TX: OFF	Poff			-30	dBm	
TX Reflectance				-26	dB	
Receiver						
Operating Wavelength		1527		1567	nm	
RX Sensitivity, Avg Power	RXsens		-9	-8	dBm	2, 5
RX Overload, Avg Power	RXsat	4			dBm	2
RX Damage Threshold	RXdmg	4			dBm	
RX Sensitivity, Avg Power at OSNR 32dB/0.1nm				-7	dBm	3, 5
Dispersion Tolerance		-30		+30	ps/nm	4, 5
RX Reflectance				-26	dB	
LOS Assert	LOSA	-15			dBm	
LOS De-Assert	LOSD			-10.5	dBm	
LOS Hysteresis			1		dB	

Notes:

- 1. The raw data rate is minimum 103.125 Gbps, when FEC code is added, the actual optical signal data rate is higher.
- 2. Rx average power sensitivity and overload are for post-FEC BER < 1E-15 with integrated FEC without dispersion and noise load at BOL.
- 3. Rx average power sensitivity at OSNR 32dB is for post-FEC BER < 1E-15 with integrated FEC without dispersion at OSNR 32dB/0.1nm at BOL. A 100GHz spacing DWDM filter with enough bandwidth should be used to remove the extra noises of the optical signal with noises for the RX test.
- 4. Dispersion tolerance is for dispersion values that cause Rx OSNR penalty less than 2 dB when compared with no dispersion at RX power -6 dBm and PRBS15 signal at BER 2e-3 at the operating data rate at BOL. A 100GHz spacing DWDM filter with enough bandwidth should be used to remove the extra noises of the optical signal with noises for the RX BER test.
- 5. The Average output optical power, RX sensitivity, RX sensitivity at OSNR 32dB/0.1nm, and Dispersion tolerance parameters are specified for beginning of life (BOL) over the operating temperature with clean fiber connectors.

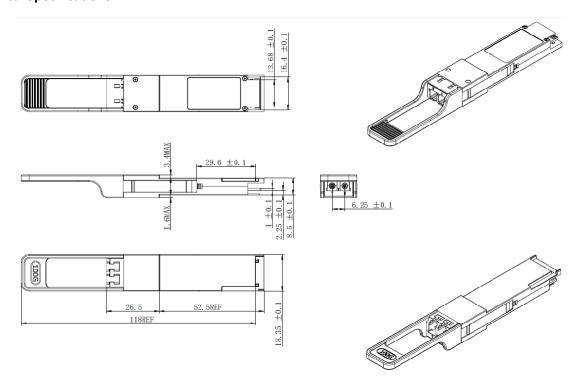

Pin Descriptions

Pin	Logic	Symbol	Name/Descriptions	Plug Sequence	Ref.
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	3	
7		GND	Ground	1	1
8	LVTTL-I	ModSelL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		VccRx	+3.3V Power Supply Receiver	2	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL/RX_LOS	Interrupt	3	3
29		VccTx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode/TX_ DIS	Low Power Mode	3	3
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1


Notes:

- 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted.
- 2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently

Electrical Pin-out Details



Top Side Viewed from Top

Bottom Side Viewed from Bottom

Mechanical Specifications

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box (SKYGATE).

