

OFF13F0C502DGMU

Mellanox[®] MMS4X00-NM Compatible TAA 800GBase-DR8 PAM4 OSFP Transceiver (SMF, 1310nm, 500m, 2xMPO, DOM, CMIS 5.0)

Product Description

This Mellanox[®] MMS4X00-NM compatible OSFP transceiver provides 800GBase-DR8 throughput up to 500m over single-mode fiber (SMF) using a wavelength of 1310nm via a 2xMPO connector. It is guaranteed to be 100% compatible with the equivalent Mellanox[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- OSFP MSA Compliant
- Supports 850Gbps
- 8x53.125GBd (PAM4) Electrical Interface
- Compliant with IEEE 802.3cu-2021: 8x100GBASE-DR optical interface
- Compliant with IEEE 802.3ck-2022: 8x100GAUI-1 C2M electrical interface
- Support both Ethernet and InfiniBand NDR
- EML transmitter and PIN PD receiver
- Commercial Temperature: 0 to 70 Celsius
- Class 1 Laser
- Dual MPO-12 Connector APC
- RoHS Compliant and Lead-Free

Applications:

- 8x100GBase Ethernet
- 2x400GBase Ethernet

For your product safety, please read the following information carefully before any manipulation of the transceiver:

ESD

LASER SAFETY This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity (non-condensing)	RH	5		95	%	
Data Input Voltage Differential	VDIP-VDIN			1	V	
Control Input Voltage	VI	-0.3		VCC+0.5	V	
Control Output Current	10	-20		20	mA	
Signaling Speed per Lane	DRL		53.125		GBd	
Operating Distance		2		500	m	

Notes:

1. Exceeding the Absolute Maximum Ratings table may cause permanent damage to the device. This is just an emphasized rating and does not involve the functional operation of the device that exceeds the specifications of this technical specification under these or other conditions. Long-term operation under Absolute Maximum Ratings will affect the reliability of the device.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Instantaneous peak cu	rrent at hot plug	ICC_IP			6600	mA	
Sustained peak curren	t at hot plug	ICC_SP			5494.5	mA	
Maximum Power Dissi	pation	PD			16.5	w	
Maximum Power Dissipation, Low Power Mode		PDLP			2	W	
Control Input Voltage High		VIH	VCC*0.7		VCC+0.3	V	
Control Input Voltage Low		VIL	-0.3		VCC*0.3	V	
Two Wire Serial Interface Clock Rate					400	kHz	
Power Supply Noise 1				66	mVpp		
High-Speed Electrical Tr	ansmitter Characteristics (TI	P1)					
Differential Peak-Peak Ir	nput Voltage Tolerance		750			mV	
Peak-to-Peak AC	Low-frequency, VCM _{LF}				32	mV	
Voltage Tolerance	Full-band, VCM _{FB}				80	mV	
Differential-mode to common-mode return loss		RLcd	802.3ck 120G-2			dB	
Effective return loss		ERL	8.5			dB	
Differential termination mismatch					10	%	

Single-ended voltage to		-0.4		3.3	V		
DC common-mode volt		-0.35		2.85	V		
High-Speed Electrical Receiver Characteristics (TP4)							
Peak-to-Peak AC	Low-frequency, VCM _{LF}				32	mV	
Voltage	Full-band, VCM _{FB}				80	mV	
Differential Peak-to-	Short Mode				600	mV	
Peak Output Voltage	Long Mode				845	mV	
Eye height		EH	15			mV	
Vertical eye closure		VEC			12	dB	
Common-mode to differential-mode return loss		RLDc	802.3ck 120G-1			dB	
Effective return loss		ERL	8.5			dB	
Differential termination mismatch					10	%	
Transition time			8.5			ps	
DC common-mode voltage tolerance			-0.35		2.85	V	

Notes:

1. Compliant with IEEE802.3ck C2M.

Electrical Low Speed Control and Sense Signals Specifications

Parameter	Symbol	Min.	Max.	Unit	Notes
Module output SCL and SDA	VOL	0	0.4	V	
Module Input SCL and SDA	VIL	-0.3	VCC*0.3	V	
	VIH	VCC*0.7	VCC+0.5	V	
InitMode, ResetL and ModSelL	VIL	-0.3	0.8	V	
	VIH	2	VCC+0.3	V	
IntL	VOL	0	0.4	V	
	VOH	VCC-0.5	VCC+0.3	V	

Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Wavelength		λC	1304.5	1311	1317.5	nm	
Side Mode Sup	pression Ratio	SMSR	30			dB	
Average Launc	h Power, each lane	AOPL	-2.9		4.0	dBm	1
Outer Optical I (OMAouter), ea	Modulation Amplitude ach Lane	ТОМА	-0.8		4.2	dBm	
Launch power	for extinction ratio >= 5dB	TOMA-TDECQ	-2.2			dBm	
Minus TDECQ, each lane	for extinction ratio < 5dB	TOMA-TDECQ	-1.9			dBm	
Transmitter an	d Dispersion Eye Closure	TDECQ			3.4	dB	
TDECQ - 10log	10(Ceq), each lane	Ceq			3.4	dB	
Average Launc	h Power of OFF	TOFF			-15	dBm	
Transmitter, each lane							
Extinction Ratio		ER	3.5			dB	
Transmitter Transition Time		Tr			17	ps	
RIN _{15.5} OMA		RIN			-136	dB/Hz	
Optical Return	Loss Tolerance	ORL			15.5	dB	
Transmitter Re	flectance	TR			-26	dB	2
Receiver							
Wavelength		λርΟ	1304.5	1311	1317.5	nm	
Damage Thres	hold, each Lane	AOP _D	5			dBm	
Average Receiv	ve Power, each Lane	AOP _R	-5.9		4	dBm	
Receive Power	(OMAouter), each Lane	OMA _R			4.2	dBm	
Receiver Reflectance		RR			-26	dB	
Receiver Sensitivity (OMAouter), each Lane		Soma			Max (–3.9, SECQ – 5.3)	dBm	3
Stressed Receiv each Lane	ver Sensitivity (OMAouter),	SRS			-1.9	dBm	4
Conditions of S	tressed Receiver Sensitivity	y Test					
Stressed Eye Cl Lane Under Tes	osure for PAM4 (SECQ), st	SECQ		3.4		dB	
SECQ – 10log10) (Ceq), Lane Under Test	Ceq			3.4	dB	

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB.
- 4. Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4} .

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	
2	CML-I	Tx2+	Transmitter Non-Inverted Data.	
3	CML-I	Tx2-	Transmitter Inverted Data.	
4		GND	Module Ground.	
5	CML-I	Tx4+	Transmitter Non-Inverted Data.	
6	CML-I	Tx4-	Transmitter Inverted Data.	
7		GND	Module Ground.	
8	CML-I	Tx6+	Transmitter Non-Inverted Data.	
9	CML-I	Тх6-	Transmitter Inverted Data.	
10		GND	Module Ground.	
11	CML-I	Tx8+	Transmitter Non-Inverted Data.	
12	CML-I	Tx8-	Transmitter Inverted Data.	
13		GND	Module Ground.	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
15		Vcc	+3.3V Power Supply.	
16		Vcc	+3.3V Power Supply.	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	
18		GND	Module Ground.	
19	CML-O	Rx7-	Receiver Inverted Data.	
20	CML-O	Rx7+	Receiver Non-Inverted Data.	
21		GND	Module Ground.	
22	CML-O	Rx5-	Receiver Inverted Data.	
23	CML-O	Rx5+	Receiver Non-Inverted Data.	
24		GND	Module Ground.	
25	CML-O	Rx3-	Receiver Inverted Data.	
26	CML-O	Rx3+	Receiver Non-Inverted Data.	
27		GND	Module Ground.	
28	CML-O	Rx1-	Receiver Inverted Data.	
29	CML-O	Rx1+	Receiver Non-Inverted Data.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	Rx2+	Receiver Non-Inverted Data.	
33	CML-O	Rx2-	Receiver Inverted Data.	
34		GND	Module Ground.	
35	CML-O	Rx4+	Receiver Non-Inverted Data.	

36	CML-O	Rx4-	Receiver Inverted Data.	
37		GND	Module Ground.	
38	CML-O	Rx6+	Receiver Non-Inverted Data.	
39	CML-O	Rx6-	Receiver Inverted Data.	
40		GND	Module Ground.	
41	CML-O	Rx8+	Receiver Non-Inverted Data.	
42	CML-O	Rx8-	Receiver Inverted Data.	
43		GND	Module Ground.	
44	Multi-Level	INT/RSTn	Module Input/Module Reset.	
45		Vcc	+3.3V Power Supply.	
46		Vcc	+3.3V Power Supply.	
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
48		GND	Module Ground.	
49	CML-I	Tx7-	Transmitter Inverted Data.	
50	CML-I	Tx7+	Transmitter Non-Inverted Data.	
51		GND	Module Ground.	
52	CML-I	Tx5-	Transmitter Inverted Data.	
53	CML-I	Tx5+	Transmitter Non-Inverted Data.	
54		GND	Module Ground.	
55	CML-I	Tx3-	Transmitter Inverted Data.	
56	CML-I	Tx3+	Transmitter Non-Inverted Data.	
57		GND	Module Ground.	
58	CML-I	Tx1-	Transmitter Inverted Data.	
59	CML-I	Tx1+	Transmitter Non-Inverted Data.	
60		GND	Module Ground.	

Electrical Pad Layout

Recommended OSFP Host board Schematic

Mechanical Specifications

*Note: Both Heat Sink Exposed and Heat Sink Enclosed styles are OSFP Type 2 Compliant. Images are for Illustration purposes only. Product Labels, colors, and style may vary.

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box.

